
15418 Parallel Computer Architecture

Fall 2014: Final Project

Parallel Seam Carving

Aditya Bist (abist)
 Vinay Palakkode (vpalakko)  

Acknowledgement

We would like to thank Cary Yang and Prof. Kayvon Fatahlian for their valuable inputs and
suggestions. It is also worth mentioning that we had a very brief email conversation with
Jonathan Ragan-Kelley and James Hegarty while we were exploring the possibility of using
Halide to accelerate Seam Carving.

Summary
With the aid of certain approximations, we designed a new algorithm for content aware
retargeting which ran ~25x faster than the conventional seam carving on a x86 Haswell
platform. We adopted this approach because owing to the inherent sequential nature seam
carving mapped directly on to a GPU (NVIDIA GTX 780) yielded only an approximate speed up
of 7x when compared to a single threaded CPU baseline implementation. And was largely due
to parallelization of the energy computation stage of the algorithm (which is quite trivial)

Background
Image targeting is the process of changing the resolution of an image/ video frame without most
likely without preserving the aspect ration. Content agnostic image retargeting solutions like
crop or scaling performs poorly in maintaining visual information proportional to the change in
the aspect ration. Seam Carving is a content-aware image resizing algorithm developed by Shai
Avidan, of Mitsubishi Electric Research Laboratories (MERL), and Ariel Shamir, of the
Interdisciplinary Center and MERL. The gist of the algorithm is that we remove pixels of less
importance which means the pixel removed need not be along a straight line in orthogonal
directions. Such a low energy 8 connected path is called a Seam and evidently this is not a
transformation which maps straight lines to straight lines (Affine).  

A complete description of the algorithm is available in our project website. Or please look into
the references cited in the end of this doc as well as in our web page
http://www.contrib.andrew.cmu.edu/~abist/seamcarving.html

�2

Challenges 

• The default seam carving algorithm uses dynamic programming for the seam map
computation, which is not GPU friendly and there is very low computation to communication
ratio (arithmetic intensity).

• In order to speed up this algorithm, we definitely have to make approximations which would
result in degradation of the retargeted image quality (aka. result in visual artifacts).

• Since there is no ground truth for us to compare the modified algorithms outputs to, defining
an evaluation metrics for us is as challenging as optimizing the baseline algorithm itself (if not
more)

• Creating a test dataset (input images) with different energy distributions/patterns so as to see
the extent of artifacts introduced by the approximations

Approach

We spent some time doing research on different energy functions to see how the choice of
energy function affects the quality of the seam carved output. The best results are obtained with
Histogram of Oriented gradients when it comes to quality of the output, but the this nearly an
impossible algorithm to achieve realtime performance on images as big as 1280 x 720. But for
all practical purposes a simple image gradient magnitude works well and we decided to stick on
to this as the preferred energy function. 

As the lion share of the time is spent on computing the energy, we decided to attach this part
first and it is heavily data parallel and CUDA seamed to be a really good choice for this. 

Seam Carving CUDA

We implemented Seam Carving on NVIDIA GTX 780 with the aid of 3 kernels. One for the
energy map computation which basically spawns one CUDA thread per output element with a
fixed block size of 32 x 32 (coming from the fact that the max # threads per block in GTX 750 is
1024). Boundary checks were done by the threads on the image boundary. So definitely the
input pixels have to be copied to the Device memory and results to be copied back to the host
memory.

Minimum Cost table is updated at the granularity of one image row. This means we have a
kernel launch per row of the image. And each row element needs the info from the previous row.

�3

We used shared memory to slightly improve the results here, but unlike energy map this stage
is not trivially data parallel.

The Minimum Reduction Kernel also does is bottle necked by the dependencies in the previous
rows. So the bottom line is that when compared to a OpenCV aided single threaded
implementation of x86 Haswell, the CUDA version is approximately 7x faster. This is pretty
much in agreement with the literatures on CUDA implementation on Seam Carving (kindly see
references). But this is a trivial and intuitive result, as the optimization comes from the data
parallel nature of the energy computation. Hence we decided to come up with a new algorithm
which targets at achieving much higher performance from a single threaded implementation.
Dynamic programming is essentially sequential. The only way to parallelize such algorithms
would be making approximations based on heuristics and have a balance / trade off between
quality and performance.

418 Carving : A Hacky Image Retargeting Algorithm
 

Our proposed algorithm would not beat the quality of image generated by classical seam
carving. However, we can improve the quality of our algorithm by choosing a more sophisticated
energy function which is more verbose in terms of visual salience. 
 

�4

ALGORITHM

1. Compute the Energy map as in the Conventional Seam Carving, but just once per entire
image unlike in the previous case where we computed this for every seam removal  

2. Sort the first row of energies and get the indices of the lowest “n” indices to choose the start
points of the “n” seams to be removed. 

3. Use dynamic programming exactly as in Seam Carving but in order to prevent multiple
seams converging on to a single path, the moment an pixel is chosen by a seam, mark that
pixel as used (UMAX in the energy map), so that none of the seams will pick this point 

4. Remove all the seams in one pass, which means we will resize the output matrix in one go.
For an Image of width W, for n seam removal, we reduce the number of memory writes
drastically. (Kindly see the analysis section to see the trend)

 

RESULTS AND PERFORMANCE ANALYSIS

A good example where this approximation works is where there is a significant amount of low
energy paths possible in one region of the image

Seam Carved from W = 500 to 450 418 Carved from W = 500 to 450

But if there is concentration of low energy paths periodically, then this can result in significant
artifacts visually. Consider the follow 1200 x 1210 Chess board image when 200 seams where
418 carved looks like the following

�5

Performance
• All the figures reported are based on the readings obtained with image sized 1428 x

968  

• MacBook Pro "Core i7" 22 nm "Haswell/Crystalwell" 2.8 GHz Intel "Core i7" processor
(4980HQ), a 6 MB shared level 3 cache, 16 GB of onboard 1600 MHz DDR3L
SDRAM 

• Baseline code is the same single threaded OpenCV aided Seam carving code used
as the baseline to compare CUDA implementation. 

• We used cylceTimer.h to profile all the code. All the speed up (X) reported are wrt. to
the above baseline (unless and otherwise specified)

�6

1. 418 Carving computes the energy only ones, so for a given size the cost of energy
computation is independent of the number of seams to be removed. This is a tremendous
optimization when it comes to removing a large number of seams. Interestingly the new
algorithm is even more harder to parallelize (although a single threaded implemented
outperforms any GPU implementation since we have reduced the cost of energy

�7

computation algorithm itself, so it is no more compute bound. 

2. Seam Map Computation 
 
This stage is the highly sequential in nature and it still used the dynamic programming. But

�8

we avoid doing this step on a per seam basis following by an intermediate matrix resizing.

We mark all the seams in one pass and then proceed to remove all of them in one pass. 
Seam removal is the stage where we use the results from the previous stage. This is one
stage where 418 carving performs poorly with increase in the number of seams to be
removed. This because for every row to be resized, in 418 carving in the worse case we
would need of each pixel index with n Seam indices in the map to see if it is marked in the
map or not.  
 
 

�9

3. Matrix resizing:  

This is the stage where we obtained huge performance boost by bringing down the number of

writes to the memory. Just like the energy computation stage we brought down the number in
such a way that it is independent of the number of seams removed.

�10

This is one of those algorithms where the entire data set would be in the L2 cache, which
means, the only way to further optimize the algorithm is to reduce the number of writes
(BusRdx) as much as possible.

References
Avidan, S. AND Shamir, A. 2007. Seam Carving for Content-Aware Image Resizing. 

Duarte, R. AND Sendag, R. 2012. Accelerating and Characterizing Seam Carving Using a
Heterogeneous CPU-GPU System. 

NVIDIA CUDA Programming Guide

�11

